Fourier Transform of N-Dimensional Gaussian
 Distribution

Zhifan Zhu

September 122023

TL;DR

Let $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma), \mathbf{x} \in R^{n}$, the multivariate gaussian distribution is defined as

$$
f(\mathbf{x})=\frac{1}{\sqrt{\operatorname{det}(\Sigma)}(2 \pi)^{n / 2}} \exp \left\{-\frac{1}{2} \mathbf{x}^{T} \Sigma^{-1} \mathbf{x}\right\}
$$

Fourier transform of $f(\mathbf{x})$ is given by

$$
F(\mathbf{s})=\mathcal{F}(f)=\int_{R^{n}} f(\mathbf{x}) \exp \left\{-i 2 \pi \mathbf{s}^{T} \mathbf{x}\right\} d \mathbf{x}
$$

where $\mathbf{s} \in R^{n}$ and $F(s)$ is a scalar, i.e. F maps from R^{n} to R.
The Fourier transform of $f(\mathbf{x})$ is

$$
F(\mathbf{s})=\mathcal{F}(\mathcal{N}(\mathbf{0}, \Sigma))=\exp \left\{-\frac{1}{2}(2 \pi \mathbf{s})^{T} \Sigma(2 \pi \mathbf{s})\right\}
$$

furthermore,

$$
\mathcal{F}(\mathcal{N}(\mu, \Sigma))=\exp \left\{-i 2 \pi \mathbf{s}^{T} \mu\right\} \cdot \exp \left\{-\frac{1}{2}(2 \pi \mathbf{s})^{T} \Sigma(2 \pi \mathbf{s})\right\}
$$

Derivation Steps

Expanding $F(\mathbf{s})$

$$
\begin{aligned}
F(\mathbf{s}) & =\mathcal{F}(f)=\int_{R^{n}} f(\mathbf{x}) \exp \left\{-i 2 \pi \mathbf{s}^{T} \mathbf{x}\right\} d \mathbf{x} \\
& =\int_{R^{n}} \frac{1}{\sqrt{\operatorname{det}(\Sigma)}(2 \pi)^{n / 2}} \exp \left\{-\frac{1}{2} \mathbf{x}^{T} \Sigma^{-1} \mathbf{x}\right\} \exp \left\{-i 2 \pi \mathbf{s}^{T} \mathbf{x}\right\} d \mathbf{x} \\
& =\int_{R^{n}} \frac{1}{\sqrt{\operatorname{det}(\Sigma)}(2 \pi)^{n / 2}} \exp \left\{-\frac{1}{2}\left[\mathbf{x}^{T} \Sigma^{-1} \mathbf{x}-2(-i 2 \pi \mathbf{s})^{T} \mathbf{x}\right]\right\} d \mathbf{x} \\
& =\int_{R^{n}} \frac{1}{\sqrt{\operatorname{det}(\Sigma)}(2 \pi)^{n / 2}} \exp \left\{-\frac{1}{2} \Delta^{2}\right\} d \mathbf{x}
\end{aligned}
$$

where

$$
\Delta^{2}=\mathbf{x}^{T} \Sigma^{-1} \mathbf{x}-2(-i 2 \pi \mathbf{s})^{T} \mathbf{x}
$$

Now we use a standard trick called complete the square

$$
\begin{aligned}
& \qquad \mathbf{x}^{T} A \mathbf{x}-2 \mathbf{b}^{T} \mathbf{x}=(\mathbf{x}-\mathbf{u})^{T} A(\mathbf{x}-\mathbf{u})-\mathbf{u}^{T} A \mathbf{u} \\
& \text { with } \mathbf{u}=A^{-1} \mathbf{b} \\
& \quad A \text { is symmetric and invertible }
\end{aligned}
$$

The convariance matrix Σ is symmetric and invertible, hence it satisfies the condition. Therefore, we can substitute as

$$
\begin{aligned}
& A=\Sigma^{-1} \\
& \mathbf{b}=-i 2 \pi \mathbf{s} \\
& \rightarrow \\
& \mathbf{u}=\left(\Sigma^{-1}\right)^{-1}(-i 2 \pi \mathbf{s}) \\
&=\Sigma(-i 2 \pi \mathbf{s}) \\
& \mathbf{u}^{T} A \mathbf{u}=-i(2 \pi \mathbf{s})^{T} \Sigma^{T} \Sigma^{-1} \Sigma(-i 2 \pi \mathbf{s}) \\
&=-(2 \pi \mathbf{s})^{T} \Sigma(2 \pi \mathbf{s})
\end{aligned}
$$

Put \mathbf{u} and $\mathbf{u}^{T} A \mathbf{u}$ back into Δ^{2}, we have

$$
\begin{aligned}
\Delta^{2} & =(\mathbf{x}-\mathbf{u})^{T} A(\mathbf{x}-\mathbf{u})-\mathbf{u}^{T} A \mathbf{u} \\
& =(\mathbf{x}-\mathbf{u})^{T} \Sigma^{-1}(\mathbf{x}-\mathbf{u})+(2 \pi \mathbf{s})^{T} \Sigma(2 \pi \mathbf{s})
\end{aligned}
$$

Put Δ^{2} back into $F(\mathbf{s})$ we have

$$
\begin{aligned}
F(\mathbf{s}) & =\int_{R^{n}} \frac{1}{\sqrt{\operatorname{det}(\Sigma)}(2 \pi)^{n / 2}} \exp \left\{-\frac{1}{2}\left[(\mathbf{x}-\mathbf{u})^{T} \Sigma^{-1}(\mathbf{x}-\mathbf{u})+(2 \pi \mathbf{s})^{T} \Sigma(2 \pi \mathbf{s})\right]\right\} d \mathbf{x} \\
& =\int_{R^{n}} \frac{1}{\sqrt{\operatorname{det}(\Sigma)}(2 \pi)^{n / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\mathbf{u})^{T} \Sigma^{-1}(\mathbf{x}-\mathbf{u})\right\} \exp \left\{-\frac{1}{2}(2 \pi \mathbf{s})^{T} \Sigma(2 \pi \mathbf{s})\right\} d \mathbf{x} \\
& =\left(\int_{R^{n}} \frac{1}{\sqrt{\operatorname{det}(\Sigma)}(2 \pi)^{n / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\mathbf{u})^{T} \Sigma^{-1}(\mathbf{x}-\mathbf{u})\right\} d \mathbf{x}\right) \cdot\left(\exp \left\{-\frac{1}{2}(2 \pi \mathbf{s})^{T} \Sigma(2 \pi \mathbf{s})\right\}\right)
\end{aligned}
$$

where the first term is simply the sum of probability, i.e. equals to 1 , therefore

$$
F(\mathbf{s})=\exp \left\{-\frac{1}{2}(2 \pi \mathbf{s})^{T} \Sigma(2 \pi \mathbf{s})\right\}
$$

By applying the shift property of Fourier transform, we can easily obtain

$$
\begin{aligned}
\mathcal{F}(\mathcal{N}(\mu, \Sigma)) & =\mathcal{F}(f(\mathbf{x}-\mu)) \\
& =\exp \left\{-i 2 \pi \mathbf{s}^{T} \mu\right\} \cdot F(\mathbf{s}) \\
& =\exp \left\{-i 2 \pi \mathbf{s}^{T} \mu\right\} \cdot \exp \left\{-\frac{1}{2}(2 \pi \mathbf{s})^{T} \Sigma(2 \pi \mathbf{s})\right\}
\end{aligned}
$$

References

[1] Solving ODEs and Fourier transforms. https://warwick.ac.uk/fac/sci/mathsys/ courses/msc/ma934/resources/notes8.pdf

